Extension of Completely Positive Cone Relaxation to Polynomial Optimization
نویسندگان
چکیده
We propose the moment cone relaxation for a class of polynomial optimization problems (POPs) to extend the results on the completely positive cone programming relaxation for the quadratic optimization (QOP) model by Arima, Kim and Kojima. The moment cone relaxation is constructed to take advantage of sparsity of the POPs, so that efficient numerical methods can be developed in the future. We establish the equivalence between the optimal value of the POP and that of the moment cone relaxation under conditions similar to the ones assumed in the QOP model. The proposed method is compared with the canonical convexification procedure recently proposed by Peña, Vera and Zuluaga for POPs. The moment cone relaxation is theoretically powerful, but numerically intractable. For tractable numerical methods, the doubly nonnegative cone relaxation is derived from the moment cone relaxation. Exploiting sparsity in the doubly nonnegative cone relaxation and its incorporation into Lasserre’s semidefinite relaxation are briefly discussed.
منابع مشابه
B-471 Extension of Completely Positive Cone Relaxation to Polynomial Optimization
We propose the moment cone relaxation for a class of polynomial optimization problems (POPs) to extend the results on the completely positive cone programming relaxation for the quadratic optimization (QOP) model by Arima, Kim and Kojima. The moment cone relaxation is constructed to take advantage of sparsity of the POPs, so that efficient numerical methods can be developed in the future. We es...
متن کاملLagrangian-Conic Relaxations, Part II: Applications to Polynomial Optimization Problems
We present the moment cone (MC) relaxation and a hierarchy of sparse LagrangianSDP relaxations of polynomial optimization problems (POPs) using the unified framework established in Part I. The MC relaxation is derived for a POP of minimizing a polynomial subject to a nonconvex cone constraint and polynomial equality constraints. It is an extension of the completely positive programming relaxati...
متن کاملB - 476 Lagrangian - Conic Relaxations , Part II : Applications to Polyno - mial Optimization Problems
We present the moment cone (MC) relaxation and a hierarchy of sparse LagrangianSDP relaxations of polynomial optimization problems (POPs) using the unified framework established in Part I. The MC relaxation is derived for a POP of minimizing a polynomial subject to a nonconvex cone constraint and polynomial equality constraints. It is an extension of the completely positive programming relaxati...
متن کاملCompletely positive reformulations for polynomial optimization
Polynomial optimization encompasses a very rich class of problems in which both the objective and constraints can be written in terms of polynomials on the decision variables. There is a well established body of research on quadratic polynomial optimization problems based on reformulations of the original problem as a conic program over the cone of completely positive matrices, or its conic dua...
متن کاملB-475 Lagrangian-Conic Relaxations, Part I: A Unified Framework and Its Applications to Quadratic Optimization Problems
In Part I of a series of study on Lagrangian-conic relaxations, we introduce a unified framework for conic and Lagrangian-conic relaxations of quadratic optimization problems (QOPs) and polynomial optimization problems (POPs). The framework is constructed with a linear conic optimization problem (COP) in a finite dimensional vector space endowed with an inner product, where the cone used is not...
متن کامل